
HOW TO SLICE A FEATURE

ivarjacobson.com

1

2

3

PREPARE THE
INPUT FEATURE

EVALUATE
THE SLICING

APPLY THE
SLICING

PATTERNS

WARNING – Don’t slice Features unless
something is needed in the next PI �
Does the Feature satisfy INVEST*
(Except, perhaps sized appropriately)

YESYES

NO

Is the Feature size less than 1/10th
of your program velocity?**
(or typically medium or smaller).

You’re done
Continue. You
need to split it.

Reformulate the Feature to
clearly communicate the benefit
or slice off one or more smaller
Features which do satisfy
INVEST and carry clear benefit.

BREAK OUT
COMMON
ENABLERS

FIND A STORY
GROUP

KISS
(KEEP IT SIMPLE)

DEFER OPTIONAL
BEHAVIORS

SEPARATE BUSINESS
VARIATIONS

SEPARATE DIFFERENT
CHANNELS

ISOLATE SPECIAL
VARIATIONS

BREAK OUT
A SPIKE

CONSIDER
INCREMENTALLY
SOURCING DATA

ADDRESS DIFFERENT
USER GROUPS
INDIVIDUALLY

Inspired by, and complementary to, “How To Split A Story”, Richard Lawrence, www.agileforall.com

Are the new
Features roughly
equal in size?

YESYES

NO

Do each of the new Features
readily fit into a PI (< 1/10 of
the program velocity)?

Try another pattern on the
original Feature or the new
Features that are too large.

Could you break out the
common enablers into their
own ‘Architectural’ Features?
Delivering the enablers can
significantly de-risk, simplify
and reduce the estimates for
the other, related Features.

Do each of the new
Features satisfy
INVEST?

Is there an obvious Feature to start
with that gets you early benefit,
learning, risk reduction etc?

Try another pattern
to see if you can get this.

You’re done, though
you could try another
pattern to see if it gets
better results.

Could you find the set of
most valuable Stories and
develop and release them
as their own Feature?

Could you focus on the most popular / highest
volume cases first and treat the more specialized
corner cases as separate Features? You may find
that their value / cost ratio is very small and they

are never needed.

Could you slice the Feature to do that
simple core first and build on it later

with further Features?

Does the Feature have a simple
core that provides most of the

benefit and / or learning? This is
often the happy path with some

basic error handling.

Could you make the optional behaviors
separate Features to be done once the core

functionality / most popular option is in
place?

 Could you deliver it one business at a
time? Could you start with the simplest
business variant to generate quick wins

and fast feedback?

Does the Feature include lots
of optional behavior (for
example different ways to
achieve the same goal)?

Do the minimum �to answer the
questions and then start again at the

top of this process.

Does the Feature lend itself
to being released

incrementally to different
areas of the business?

Does the Feature need to be
delivered over different channels,

different mediums or different
routes to the customer?

Could you deliver it one technology /
one channel at a time? Could you start
with the channel or most value to the
business and add the other channels
over time?

Could you give each User Group their own
Feature? This can help you to better
understand the benefits to each group.
See also Break Out Common Enablers.

Could you deliver benefit with a
sub-set of the data? Could the

data be consumed
incrementally or sourced from

existing secondary source.

Does the Feature involve
different user groups with

different goals?

Does the Feature involve
different user groups that want

different sets of stories?

Does 80% of the
value come from

20% of the Stories?

Do many Features rely on the
same underlying system

behaviors (often making the
first of them selected to be
very large and complex)? Does the Feature

include Special
Variations?

Does the Feature
involve lots of data
from many sources?

Are you still baffled
about how to slice the

Feature?

Can you define the 1..3
questions most holding

you back?

Write a Spike / Knowledge
Enabler with those questions

in mind.

WARNING DON’T:
• Defer non-functional requirements
• Slice too early
• Over slice
• Slice by component
• Forget the Feature testing

LA
ST RESO

RT* INVEST Features should be:
Independent
Negotiable
Valuable
Estimable
Sized Appropriately
Testable

** Velocity varies between programs but as a
rule of thumb a program should be tackling at
least the ‘Top 10’ Features hence the no greater
than 1/10th of the program velocity guideline.

